Article # "Porcelain stoneware panels: the behaviour of powders" by Roberto Soldati¹, Chiara Zanelli¹, Guia Guarini¹, Sandra Fazio², Maria Chiara Bignozzi², Michele Dondi¹ ¹CNR-ISTEC, via Granarolo 64, Faenza, Italy ²Centro Ceramico, via Martelli 26/A, Bologna, Italy **Figure 1.** The most critical points in terms of spray-dried powder behaviour prior to pressing. 1) Powder flow through the hopper orifice; 2) formation of undulations on the top of the bed of powder; 3) de-aeration of the soft layer. Table 1. Effect of the intrinsic characteristics of spray-dried powders on their behaviour during deposition | Process phase [REFERENCE PARAMETER] | Finer particle size | Less fine particle size | Irregularly shaped aggregates (>10% vol.) | Moisture
content | |--|--|--|--|---------------------| | Powder flow from the hopper [MASS FLOW] | higher flow rate
[>14.5 g·cm ⁻² ·s ⁻¹] | lower flow rate [<14.5 g·cm ⁻² ·s ⁻¹] | lower flow rate [<14.5 g·cm ⁻ ² ·s ⁻¹] | | | Powder deposition [ANGLE OF REST] | not critical | arrangement with larger angle [>30°] | arrangement with larger angle [>30°] | ant | | Apparent density of soft powder [POURED DENSITY] | not critical | less dense soft
powder
[<0.97 g·cm ⁻³] | less dense soft powder
[<0.97 g·cm ⁻³] | irrelevant | | De-aeration of soft powder [HAUSNER RATIO] | not critical | less mobilisable soft powder [>1.12] | less mobilisable soft powder [>1.12] | | **Figure 2.** Porosity of the soft powder. Intragranular microporosity: P_{1a}, "incompressible" fraction and P_{1b}, "compressible" fraction. Intragranular macroporosity: P_{2a}, "central cavity" and P_{2b}, "funnel". Intergranular macroporosity: P₃, empty spaces between the granules. **Figure 3.** Variations in the various types of porosity as the specific pressure increases. Figure 4. Texture of the compacted powders, 50 kg/cm² (left) and 150 kg/cm² (right). Plane perpendicular to the load application direction. # Initial situation Densità versata Porosità: totale (P₁+P₂+P₃) 69% Intergranulare = P₃ 31% Intragranulare (P₁=22+P₂=16) 38% Flowability of powders Friction between granules ### Yield Mechanical yield of granule Flowability of powders ### Low P regime Intergranulare = P_3 4 Intragranulare (P_1 =26+ P_2 =4) 30 Closure of P_3 Collapse of P_{2a} Partial collapse of P_{2b} Increase in P_{1b} Compression of granules ### **High P regime** Densità apparente = 2.05 g/cm³ Pressione = 40.0 MPa 6 2 8 A A 7 10 6 8 T 9 10 11 77 9 12 12 5 Porosità: totale $(P_1+P_2+P_3)$ 23 Intergranulare = P_3 0 Intragranulare $(P_1=22+P_2=1)$ 23 Closure of P_{1b} Increase in P_{1a} Partial residue of P_{2b} Creation of triple point junctions Figure 5. Diagram showing the compaction of spray-dried powders in the four key stages of the process and the main phenomena that occur in each stage.